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1. Introduction: When sampling is done with 
unequal probabilities and without replacement 
for estimating the population total Y of a 
characteristic y defined over a population of 
size N, Horvitz and Thompson (1952) have 
proposed an unbiased estimator, 

n yi 
Y = E 

1 - 

with variance 

N N N 2 V(Y)= E + - E Y (2) 
i j(#i) 

where n is the sample size, is the proba- 
bility of including the i -th unit in the sample 
and is the probability for the i -th and j -th 
units to be both in the sample. When informa- 
tion on an auxiliary characteristic x, assum- 
ing the value X, on the i -th unit, is available 
for all the units where Y, is approximately 
proportional to Xi, considerable reduction in 
the variance can be achieved by making aX.. 
Such a scheme must obviously satisfy the con- 
dition 

= n p. , (3) 

where pi = Xi /X, X being the sum of all the 
s Condition (3) obviously puts a restriction 

on the X,'s viz. , max X. < 
X which is not a -n 

severe one. Among the schemes that satisfy 
condition (3) and are applicable for general 
sample size n > 2, we will consider here the 
Goodman and Kish (G and K) (1950) procedure 
and the Sampford's (1967) procedure. The pro- 
cedure of Sampford, which is a generalization 
of the Durbin's (1967) procedure for sample 
size 2, is described as follows: 

Assuming without loss of generality that 
< 1 for all i, define 

Xi = pi /(1 -np1) 

Let L0 

(4) 

(5) 

and L= E X. X X < m< N) (6) m 
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where S(m) denotes a set of m different units 
il, .. , and the summation in (6) is 
over all such possible sets drawn from the pop- 

ulation which are N in number. The proce- 
dure then consists of selecting the particular 
sample S(n), consisting of units il, i2, ..., in 
with probability 

P{S(n)} X. -.X. (1 - E p. ) (7) 

where 

1 12 u=1 

n t 
K = ( t Ln-t/n ) (8) 

Since the evaluation of the expression in (7) for 
all the (m) sets is out of question in practice, 
Sampford has suggested two alternative ways of 
achieving the probabilities P {S(n)} as given in 
(7). Method (i) is to select the units without 
replacement, with the probabilities evaluated 
at each drawing according to the rule described 
and illustrated by Sampford in his article. 
Method (ii) is to select n units with replace- 
ment, the first drawing being made with proba- 
bilities p, and all subsequent ones with proba- 
bilities proportional to p. /(1 -np.) and reject - 
ing completely any sample that doesn't contain 
n distinct units and to start afresh. In practice 
method (ii) could be convenient because a sam- 
ple can be discarded as soon as a duplicate unit 
is drawn. However for small samples one may 
take as a guide line in the relative preference 
of methods (i) and (ii), the value of the expected 
number of samples that must be drawn to obtain 
an acceptable sample which is given by 

Kn (EXt)n -1 -1)' . For this scheme of sam- 
pling Sampford has shown that rr. is given by 
(3) and 

K n 

where = n E X X . X 

1 S(n-2) fn-2 

n-2 
{l-(P.+p.)- 

J u=1 

(9) 

(10) 



It has also been shown by Sampford that the 
condition - rr.. > 0, is satisfied which en- 

13 

sures the nonnegativity of the Yates and Grundy 
variance estimator. 

Even though the exact expression for of 

the Sampford's procedure is available, the 
computations become quite cumbersome partic- 
ularly for N and /or n large. Since the sim- 
plicity of computations is one of the factors to 
be considered in choosing a sampling proce- 
dure, it will be of advantage if reliable approx- 
imate expressions for are derived because 
one may prefer to use the approximate expres- 
sions that would be quite satisfactory and easy 
for numerical evaluation. Also since the pro- 
cedures of Goodman and Kish, and Sampford 
are two competitive schemes, it will be worth 
while if we could compare the efficiencies of 
the two schemes. Thus it would be realistic 
for comparison purposes to derive the approx- 
imate expressions for and hence the vari- 
ance for the Sampford's procedure using the 
asymptotic approach of Hartley and Rao (1962). 
In order to evaluate the variance expression of 
the Horvitz - Thompson (H. T.) estimator under 
the Sampford's procedure, we will first eval- 
uate correct to O(N-4) under the assump- 
tions of Hartley and Rao (1962) viz., n is small 
relative to N and p, is of O(N -1). 

Z. Evaluation of the approximate expression 
for of the Sampford's procedure: Since 

np. < 1, from (4) we get by expanding in 
Taylor's series and retaining terms up to 
O(N -4) only, 

= pip] + n(pi+p]) n2 +pip.) (11) 

Since the leading term in X.X. above is of 
13 

0(N-2), in order to evaluate in (9) correct 
to O(N -4) only, it would be sufficient to eval- 
uate K n and each correct to O(N -2). For 
evaluating K 

n and we need the following 

lemma: 
Lemma 1: Let 2m be the units 
drawn in that order when a simple random 
sample without replacement of size m is 
drawn from a population of N units. Let p1 

... pN be such that each pi is of O(N -1) and 

Ep. is not necessarily equal to one. Then for 
1 

m> 3 where m is small relative to N, the 
following relations are true correct to 
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N(m)E(Pf Pf 
1 

(EPt)m- ( 2 )(EPt)m_2 

+2( 3)(Ept)m -3Ept 
2 

+ 3 -4 (12) 

2 
N(m) pf 

m-1 m_2 Ept -(m-1)(EPt) 
2 

( m21)' (EPt)m-3 (EPt) (13) 

N(m) E(Pf Pf P2 pf ) = 
m-1 

EPt 
1 2 3 

(14) 

and 

N(m) E(Pf pf (EPt) m-2. 
(EPt )2 

1 2 3 4 m 
(15) 

wherein N( m = N(N -1)... (N -m +1) and (P.) is 
to be taken as zero if < v. 

Proof is by induction which is straightfor- 
ward and hence is omitted. 
Remark: Even though the proof of the lemma 
assumes that m > 3, the relations (12) -(15) are 
true for m = 0, 1, and 2 also which can be 
easily verified. 

Lm of (6) can be written as 

Lm= (16) 
1 2 m 

where E denotes the expectation over the 
scheme described in Lemma 1. 
Substituting the value of from (4) and by 

expanding in Taylor's series we get from (16) 

L = m 
m) pf{1+npf+n2pt+...]. 

i=1 
(17) 

Now, it can be easily seen that for any set of 
positive integers , a2 , , am; the contri- 

bution of N(m) E to Lm, 



correct to O(N -2), would be zero if Za.>(m+2). 
1 

Further from the basic properties of simple 
random sampling it is also known that 

al 
pf ... pm is the same for all the per- 

and 
1 2 m 

mutations of (al, a2, am) Hence from 
(17) it follows that the expression for Lm that Then by using the relations 
could contribute to O(N -2) is 

and for any nonnegative integers 0 < m, let 

m 
I = T 

m 
J( E s T 

, m) s=f 

m 
E (n s) Ts-a 

N(m) 
Lm = 

+ n m E(pf2 pf pf 
1 2 3 m 

= (n-a) I(.Z-a, m-a) 

J(f-a, m-a) 

for any a<f <m; 

n 
2 

( ) and 
+ E(p pf Pf .. 

1 2 3 4 1(1+1, m+l )- m) Tm+1 Tf 

Substituting from (12) -(15) we get for m >3, 

Lm= 

+ 

+ {(?)n2-3(3)n+3(4 
(18) 

we get by substituting the value of Ls from 
2 (18) into (20), 

It can be verified that (18) in fact holds for 
m = 0, 1, and 2 also with the convention that 

= 0 if 

Theorem 1: For n> 5, the expression for 1 

correct to O(N -2) is Kn K = ((n-1)1.1 C1- 
n(n n(n- 1)(n +1) Ep3 

n 2 t 3 

1 1 n 2 n(n +1) 3 n(n- 1)(n2- n +2) (Ep2)2 
Kn - (n -1) : 2(n_2): + 3(n-2): 8 

(EP t) 

1 1 2 n(n+1) 3 
Kn (n-1)! 2(n-2): 3(n-2): EPt 

n(n+l)(n-2) (Ep2)2 
8(n-2): t Q. E. D. 

Remark: Direct evaluation of from (8) for 
n 

n = 2, 3, and 4 shows that (19) in fact holds for 
n>2. From (19) we get for n>2 

n(n+1)(n-2) 2 2 
(19) 

Proof: From (8) we get by using the transfor - 
mation s = n -t, 

n 
1 E 

-1 
(n-s) L Kn s 

L 
0 

(n-1) L1 (n-2) L2 

n-1 n-2 G, (20) 
n n n 

n -1 
where G = E (n -s) Let Ts= ns /s , 

s =3 

222 

correct to O(N -2). 
As the expression for in (10) is not mean- 
ingful to consider for n= 2, we derive the 
approximate expression for m.. assuming 
n>3. Expression (10) can alternatively be 
written as 

= n( f 
1 2 n_2 

n-2 
(22) 

where E' denotes the expectation taken over 



the scheme of selecting (n -2) units from the 
population excluding the i -th and j -th units with 
simple random sampling without replacement. 
Using the results of Lemma 1 with suitable 
modifications we get, from (22), for n> 3, 

n (n-2)(n+1) 
(n-2): 2 pt 1 

+ (n-1)(n-2 - (n-2 )(pf + ) 

3) 
(Pi + 

+(n..2)(n2+2n+3) 3 
3 pt 

(n- 2)(n- 3n+ 4) 
)2 

(23) 

correct to O(N -2). 
Sampford's procedure is a generalization, for 
sample size n >2, of the Durbin's (1967) pro- 
cedure which is for sample size 2. The ex- 
pression for of the Durbin's procedure is 

1 1 

K2pipj + 1-2p. 

Substituting the value of K2 from (21) in the 
above, we get after retaining terms to O(N-4) 
only, 

71. ij = 2pipjC1 
pj )_ 

(24) 

Substituting from (11), (21), and (23) into (9), 
we get for n>3, 

= 

+ )- (n-2 )pipj 

+(n- 3)(p. (n- 3)(Ep)) ] (25) 

correct to O(N -4). 
Observation of (24) shows that (25) is in fact 
true for n>2. 
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3. Comparison of the variances of the cor- 
responding H. T. estimators for the Sampford'E 
procedure and the Goodman and Kish proce- 
dure: The expression for Tr.. of the Goodman 

and Kish proeedure correct to O(N -4), as de- 
rived by Hartley and Rao (1962)(5.15 of p.369) 
can be written in the modified form as 

= 

+ (pi + ) + 2 -3 

2 
(26) 

Theorem 2: Given any unequal probability 
sampling scheme for selecting a sample of 
size n whose and are given by 

= n i 

= 

3 
+12(p. 

+ pj )- 2Ept + an 
pipi 

-(an+ l)(Pi+pj)Ept 

+(an+1)(Ept)2}], 

(27) 

(28) 

correct to O(N -4), where an is some con- 
stant that does not depend on pt's but may 
depend on n, the variance expression correct 
to 0(N0) of the corresponding H. T. esti- 
mator is given by 

2 2 

v(YH. T. ) n 

(n-1) p2z2 
n 1 1 

- (EP. zi)2 , 

Y. 
where z. = Y. 

p 

(29) 

(30) 

Proof: Substituting the values of and 

from (27) and (28) in 

Y. 

v(YH. T. ) 
+ Y2 

J 



simplifying and retaining terms to 0(N0) we 
get the expression in (29). 

Q. E. D. 

From (25) and (26) it can be observed that 
condition (28) of Theorem 2 is satisfied for 
both the procedures of Sampford as well as 
Goodman and Kish, the values of an being 

-(n -2) and 2 respectively. Since condition 
(27) is known to be satisfied for both the pro- 
cedures, we get from (29) that: 
Variance of the H. T. estimator for the 
Sampford's procedure correct to 0(N0) is 

V(YH. T. )Samp 
nCEpizi- (n=1)Epizi] 

(n-1) 
n 1 

2 
+ (n-2) (Epi zi) (31) 

and the variance of the H. T. estimator for the 
Goodman and Kish procedure correct to 0(NO) 
is 

V(YH. T. )G K 
(n ] 

(n-1) z2 

2 
- 2(Ep. zi) ] (32) 

From (31) and (32) it follows that when the 
variance is considered to 0(N1) only, 

V(YH. T. )Samp V(YH. T. )G and K 

= 10Ep.z?-(n-1)Ep?z]; (33) n 

and when the variance is considered to 0(N O), 

V(YH. T. )G K V(YH. T. )Samp 

= (n-1) z)2 > (34) 

Further percentage gain in efficiency of the 
Sampford's procedure over the Goodman and 
Kish procedure is 

(n-1) z,) 
x 100 

V(YH. T. )G K 

(35) 
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E will be an increasing function of the sample 
size since the numerator increases and the 
denominator decreases as the sample size in- 
creases. Thus from (33), (34) and (35) it can 
be concluded that 
Theorem 3: when the variance is considered to 
0(N1), the H. T. estimators corresponding to 
the Sampford's procedure and the Goodman 
and Kish procedure are equally efficient; and 
when the variance is considered to 0(N°), H. T. 
estimator corresponding to the Sampford's 
procedure is always more efficient than the 
H. T. estimator corresponding to the Goodman 
and Kish procedure and the percentage gain in 
efficiency will be larger for larger sample 
sizes. 

Thus, this result is a generalization of the 
result due to Rao (1965) wherein he compared 
the H. T. estimators corresponding to the 
Durbin's procedure and the Goodman and Kish 
procedure for sample size 2. 

4. Numerical Illustration: The data relates to 
that of 35 Scottish farms, considered by 
Sampferd (1962). In order to have an idea as 
to how good the approximate expressions for 

are in a given situation, the are calcu- i 
lated for the above data by using both the exact 
as well as the approximate expressions for 
samples of size 3. The variance also is evalu- 
ated using both the sets of . The set of 

probabilities (j = 2, 3, ... , 35) are shown 
j 

along with the approximate (j = 2, 3, ..., 35) 
j 

in Table 1. Variance calculated using the 
exact is V(Î') = 68319, whereas the vari- 
ance calculated using the approximate is 
V(Y) = 68341, which suggests that in many 
practical situations the approximate expres- 
sions for given in (25) will serve the pur- 
pose quite adequately. In Table 2 are present- 
ed the variances computed to various orders 
for both the procedures of Sampford as well as 
Goodman and Kish when samples of size 4 are 
considered. The value computed to 0(N2) rep- 
resents the true variance of the customary es- 
timator in the varying probability with replace- 
ment procedure. Values of the successive ap- 
proximations suggest that the convergence is 
quite satisfactory even though the population 
size, N=35, is much smaller than the sizes 
usually encountered in practice. For larger 
sample sizes, the relative difference between 
the two variances correct to 0(N0) is however 
expected to be much higher than it is in this 
case. 
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Table 1. 
Exact j' s and the approximate of the 

Sampford's procedure with n 3 . 

simple schemes of 
mpling without re- 

the Indian Statistical 

introduction to sam- 
Oliver and Boyd, 

sampling without re- 
probabilities of 
54: 499 -513. 

Unit 
No. j 

Exact Approximate Unit 
No. j 

Exact Approximate 

lj 
.000439 .000439 19 .001249 .001250 

3 .000456 .000457 20 .001249 .001250 
4 .000510 .000510 21 .001396 .001397 
5 .000527 .000528 22 .001396 .001397 
6 .000527 .000528 23 .001712 .001713 
7 .000545 .000546 24 .001787 .001788 
8 .000572 .000572 25 .001891 .001891 
9 .000572 .000572 26 .002185 .002185 

10 .000599 .000599 27 .002512 .002512 
11 .000625 .000626 28 .002765 .002765 
12 .000652 .000653 29 .002794 .002794 
13 .000688 .000688 30 .002873 .002873 
14 .000796 .000796 31 .003001 .003001 
15 .000804 .000805 32 .003061 .003060 
16 .000813 .000814 33 .003321 .003319 
17 .000850 .000850 34 .003870 .003866 
18 .000976 .000977 35 .004077 .004072 

Table 2. 
Approximations to V(Y ) H. T. 

Order of 
approximation 

0(N2) 

0(N1) 

0(N°) 

Sampford's procedure Goodman and Kish procedure 

55852 

49321 

48952 

55852 

49321 

48979 
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